CSE 114A

Introduction to Functional Programming

Higher-Order Functions

Plan for this week

Last week:

- user-defined data types
- and how to manipulate them using pattern matching and recursion
- how to make recursive functions more efficient with tail recursion

This week:

- code reuse with higher-order functions (HOFs)
- some useful HOFs: map, filter, and fold

Recursion is good

- Recursive code mirrors recursive data
- Base constructor -> Base case
- Inductive constructor -> Inductive case (with recursive call)
- But it can get kinda repetitive!

Example: evens

Let's write a function evens:

```
-- evens [] ==> []
-- evens [1,2,3,4] ==> [2,4]
evens :: [Int] -> [Int]
evens [] = ...
evens (x:xs) = ...
```


Example: four-letter words

Let's write a function fourChars:

-- fourChars [] ==> []
-- fourChars ["i", "must","do","work"] ==> ["must", "work"]
fourChars :: [String] -> [String]
fourChars [] = ...
fourChars (x:xs) = ...

Yikes, Most Code is the Same!

```
foo [] = []
foo (x:xs)
    | x mod 2 == 0 = x : foo xs
    | otherwise = foo xs
foo [] = []
foo (x:xs)
    | length x == 4 = x : foo xs
    | otherwise = foo xs
```

Only difference is condition

- $x \bmod 2==0$ vs length $x==4$

Moral of the day

D.R.Y. Don't Repeat Yourself!

Can we

- reuse the general pattern and
- substitute in the custom condition?

HOFs to the rescue!

General Pattern

- expressed as a higher-order function
- takes customizable operations as arguments

Specific Operation

- passed in as an argument to the HOF

The "filter" pattern

| ```evens [] = [] evens (x:xs) \| x `mod` \(2=0=x\) : evens xs | otherwise \(\quad=\quad\) evens xs``` | ```fourChars [] = [] fourChars (x:xs) \| length x == 4 = x : fourChars xs | otherwise = fourChars xs``` |
| :---: | :---: |

```
filter f [] = []
filter f (x:xs)
    | f x = x : filter f xs
    | otherwise = filter f xs
```

Use the filter pattern
to avoid duplicating code!

The "filter" pattern

General Pattern

- HOF filter
- Recursively traverse list and pick out elements that satisfy a predicate

Specific Operation

- Predicates isEven and isFour

```
filter f [] = []
filter f (x:xs)
    | f x = x : filter f xs
    otherwise = filter f xs
```

	```fourChars = filter isFour where isFour x = length x == 4```

## Let's talk about types

-- evens $[1,2,3,4]$ ==> $[2,4]$
evens :: [Int] -> [Int]
evens xs = filter isEven xs
where

> isEven : : Int -> Bool
> isEven x $=x$ 'mod` $2==0$
filter :: ???

## Let's talk about types

-- evens $[1,2,3,4]$ ==> $[2,4]$
evens :: [Int] -> [Int]
evens xs = filter isEven xs
where

> isEven : : Int -> Bool
> isEven x $=x$ 'mod` $2==0$
filter :: ???

## Let's talk about types

-- fourChars ["i", "must","do","work"] ==> ["must", "work"]
fourChars :: [String] -> [String]
fourChars xs = filter isFour xs
where

> isFour :: String -> Bool
> isFour $x=$ length $x==4$
filter :: ???

## Let's talk about types

Uh oh! So what's the type of filter?
filter :: (Int -> Bool) -> [Int] -> [Int] -- ???
filter :: (String -> Bool) -> [String] -> [String] -- ???

- It does not care what the list elements are - as long as the predicate can handle them
- It's type is polymorphic (generic) in the type of list elements
-- For any type `a`
-- if you give me a predicate on `a`s
-- and a list of `a`s,
-- I'll give you back a list of `a`s
filter :: (a -> Bool) -> [a] -> [a]


## Example: all caps

Lets write a function shout:

```
-- shout [] ==> []
-- shout ['h','e','L','L','o'] ==> ['H', 'E', 'L', 'L', 'O']
shout :: [Char] -> [Char]
shout [] = ...
shout (x:xs) = ...
```


## Example: squares

Lets write a function squares:

```
-- squares [] ==> []
-- squares [1,2,3,4] ==> [1,4,9,16]
squares :: [Int] -> [Int]
squares [] = ...
squares (x:xs) = ...
```


## Yikes, Most Code is the Same!

Lets rename the functions to foo:
-- shout
foo [] $=$ []
foo (x:xs) = toUpper $x$ : foo xs
-- squares
foo [] $=$ []
foo $(x: x s)=(x * x):$ foo $x s$

Lets refactor into the common pattern
pattern = ...

## The "map" pattern

```
shout [] = []
shout (x:xs) = toUpper x : shout xs
```

```
squares [] = []
squares (x:xs) = (x*x) : squares xs
```

```
map f [] = []
map f (x:xs) = f x : map f xs
```

The map Pattern
General Pattern

- HOF map
- Apply a transformation $f$ to each element of a list

Specific Operations

- Transformations toUpper and $\backslash \mathrm{x}->\mathrm{x} * \mathrm{x}$


## The "map" pattern

$$
\begin{aligned}
& \operatorname{map} f[] \quad=[] \\
& \operatorname{map} f(x: x s)=f x: \operatorname{map} f x s \\
& \text { Lets refactor shout and squares } \\
& \text { shout }=\text { map } . . .
\end{aligned}
$$

squares = map ...

$$
\begin{array}{ll}
\operatorname{map} f[] & =[] \\
\operatorname{map} f(x: x s) & =f x: \operatorname{map} f x s
\end{array}
$$

```
shout = map (\x -> toUpper x)
squares = map (\x -> x*x)
```


## QUIZ

What is the type of map? *

$$
\begin{array}{ll}
\operatorname{map} f[] & =[] \\
\operatorname{map} f(x: x s) & =f x: \operatorname{map} f x s
\end{array}
$$

(A) (Char -> Char) -> [Char] -> [Char]
(B) (Int -> Int) -> [Int] -> [Int]
(C) (a -> a) -> [a] -> [a]
(D) (a -> b) -> [a] -> [b]

(E) (a -> b) -> [c] -> [d]

## QUIZ

What is the type of map? *

$$
\begin{array}{ll}
\operatorname{map} f[] & =[] \\
\operatorname{map} f(x: x s) & =f x: \operatorname{map} f x s
\end{array}
$$

(A) (Char -> Char) -> [Char] -> [Char]
(B) (Int -> Int) -> [Int] -> [Int]
(C) (a -> a) -> [a] -> [a]
(D) (a -> b) -> [a] -> [b]

(E) (a -> b) -> [c] -> [d]

## The "map" pattern

-- For any types ‘ $a$ ’ and ‘ $b$ `-- if you give me a transformation from "a’ to ‘b' -- and a list of`a`s, -- I'll give you back a list of ‘b`s
$\operatorname{map}::(a->b)->[a]->[b]$

## Type says it all!

- The only meaningful thing a function of this type can do is apply its first argument to elements of the list (Hoogle it!)

Things to try at home:

- can you write a function map' : : (a -> b) -> [a] -> [b] whose behavior is different from map?
- can you write a function map' : : (a -> b) -> [a] -> [b] such that map' $f$ xs returns a list whose elements are not in map $f x s$ ?


## QUIZ

What is the value of quiz? *

> map :: (a -> b) -> [a] -> [b]
quiz $=\operatorname{map}(\backslash(x, y)->x+y)[1,2,3]$(A) $[2,4,6]$(B) $[3,5]$(C) Syntax Error(D) Type Error(E) None of the above

http://tiny.cc/cse116-quiz-ind

## QUIZ

What is the value of quiz? *

> map :: (a -> b) -> [a] -> [b]
quiz $=\operatorname{map}(\backslash(x, y)->x+y)[1,2,3]$(A) $[2,4,6]$(B) $[3,5]$(C) Syntax Error(D) Type Error(E) None of the above

http://tiny.cc/cse116-quiz-grp

## Don't Repeat Yourself

## Benefits of factoring code with HOFs:

- Reuse iteration pattern
- think in terms of standard patterns
- less to write
- easier to communicate
- Avoid bugs due to repetition


## Recall: length of a list

-- Len [] ==> 0
-- Len ["carne", "asada"] ==> 2
len :: [a] -> Int
len [] $=0$
len $(x: x s)=1+$ len $x s$

## Recall: summing a list

```
-- sum [] ==> 0
-- sum [1,2,3] ==> 6
sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs
```


## Example: string concatenation

Let's write a function cat:
-- cat [] ==> ""
-- cat ["carne", "asada", "torta"] ==> "carneasadatorta"
cat :: [String] -> String
cat [] = ...
cat (x:xs) = ...

## Can you spot the pattern?

-     - Len
foo [] $=0$
foo (x:xs) = $1+$ foo $x s$
-- sum
foo [] $=0$
foo (x:xs) $=x+$ foo $x s$
-- cat
foo [] = ""
foo (x:xs) = x ++ foo xs
pattern = ...


## The "fold-right" pattern



```
foldr f b [] = b
foldr f b (x:xs) \(=\mathrm{f} x\) (foldr f b xs)
```

The foldr Pattern

## General Pattern

- Recurse on tail
- Combine result with the head using some binary operation


## The "fold-right" pattern

```
foldr f b [] = b
foldr \(f\) b (x:xs) \(=f x\) (foldr f b xs)
```

Let's refactor sum, len and cat:

```
sum = foldr
```

cat = foldr ... ...
len = foldr

Factor the recursion out!

## The "fold-right" pattern

$$
\begin{array}{ll}
\text { foldr f b }[] & =b \\
\text { foldr f b }(x: x s) & =f \times(\text { foldr } f \text { b } x s)
\end{array}
$$

$$
\text { len }=\text { foldr }(\backslash x \mathrm{n}->1+n) 0
$$

sum = foldr (\x n -> x + n) 0

$$
\text { cat }=\text { foldr ( } \backslash x \text { s }->\times++n \text { n "" }
$$

You can write it more clearly as
sum $=$ foldr (+) 0
cat $=$ foldr (++) ""

## The "fold-right" pattern

$$
\begin{array}{ll}
\text { foldr f b }[] & =b \\
\text { foldr f b }(x: x s) & =f x(f o l d r f(x))
\end{array}
$$

$$
\text { len }=\text { foldr }(\backslash x \mathrm{n}->1+n) 0
$$

sum = foldr (\x n -> x + n) 0

$$
\text { cat }=\text { foldr ( } \backslash x \text { s }->\times++n \text { n "" }
$$

You can write it more clearly as
sum $=$ foldr (+) 0
cat $=$ foldr (++) ""

## QUIZ

What does this evaluate to? *

```
foldr f b [] = b
foldr f b (x:xs) = f x (foldr f b xs)
 quiz = foldr (:) [] [1,2,3]
```

```(A) Type error
```

```(B) \([1,2,3]\)
```

```(C) \([3,2,1]\)
```

```(D) [[3],[2],[1]]
```

```(E) [1],[2],[3]]
```


http://tiny.cc/cse116-foldeval-ind

## QUIZ

What does this evaluate to? *

$$
\begin{array}{ll}
\text { foldr } f \mathrm{~b}[] & =\mathrm{b} \\
\text { foldr } \mathrm{f} b(\mathrm{x}: \mathrm{xs}) & =\mathrm{f} \times(\text { foldr } \mathrm{f} \mathrm{~b} \times \mathrm{x})
\end{array}
$$

quiz = foldr (:) [] [1,2,3](A) Type error(B) $[1,2,3]$(C) $[3,2,1]$(D) [[3],[2],[1]](E) [1],[2],[3]]

http://tiny.cc/cse116-foldeval-grp

## The "fold-right" pattern

foldr f b [] = b
foldr f b (x:xs) $=f x$ (foldr f bxs)
foldr (:) [] [1,2,3]

$$
\begin{aligned}
& =>(:) 1(\text { foldr }(:)[][2,3]) \\
& ==(:) 1((:) 2(\text { foldr }(:)[][3])) \\
& =\Rightarrow(:) 1((:) 2((:) 3(f o l d r(:)[][]))) \\
& ==(:) 1((:) 2((:) 3[])) \\
& =1:(2:(3:[])) \\
& ==[1,2,3]
\end{aligned}
$$

## The "fold-right" pattern

```
foldr f b [x1, x2, x3, x4]
 => f x1 (foldr f b [x2, x3, x4])
 => f x1 (f x2 (foldr f b [x3, x4]))
 => f x1 (f x2 (f x3 (foldr f b [x4])))
 => f x1 (f x2 (f x3 (f x4 (foldr f b []))))
 ==> f x1 (f x2 (f x3 (f x4 b)))
```

Accumulate the values from the right
For example:

```
foldr (+) 0 [1, 2, 3, 4]
 => 1 + (foldr (+) 1 [2, 3, 4])
 => 1 + (2 + (foldr (+) 0 [3, 4]))
 => 1 + (2 + (3 + (foldr (+) 0 [4])))
 => 1 + (2 + (3 + (4 + (foldr (+) 0 []))))
 ==> 1 + (2 + (3 + (4 + 0)))
```


## QUIZ

What is the most general type of foldr? *
foldr $f b[]=b$
foldr $f b(x: x s)=f \times($ foldr $f b x s)$(A) $(a->a \rightarrow a) \rightarrow a->[a]->a$(B) $(\mathrm{a} \rightarrow \mathrm{a} \rightarrow>\mathrm{b}) \rightarrow \mathrm{a} \rightarrow[\mathrm{a}] \rightarrow \mathrm{b}$(C) $(\mathrm{a} \rightarrow \mathrm{b} \rightarrow \mathrm{a}) \rightarrow \mathrm{b} \rightarrow[\mathrm{a}] \rightarrow \mathrm{b}$(D) $(\mathrm{a} \rightarrow \mathrm{b} \rightarrow \mathrm{b}) \rightarrow \mathrm{b} \rightarrow[\mathrm{a}] \rightarrow \mathrm{b}$(E) $(\mathrm{b} \rightarrow \mathrm{a} \rightarrow \mathrm{b}) \rightarrow \mathrm{b}$ $\rightarrow[\mathrm{a}] \rightarrow \mathrm{b}$

http://tiny.cc/cse116-foldtype-ind

## QUIZ

What is the most general type of foldr? *

$$
\begin{array}{ll}
\text { foldr } f \text { b }[] & =b \\
\text { foldr } f \text { b }(x: x s) & =f x(\text { foldr } f b x s)
\end{array}
$$(A) $(a->a \rightarrow a) \rightarrow a->[a]->a$(B) $(\mathrm{a} \rightarrow \mathrm{a} \rightarrow>\mathrm{b}) \rightarrow \mathrm{a} \rightarrow[\mathrm{a}] \rightarrow \mathrm{b}$(C) $(\mathrm{a} \rightarrow \mathrm{b} \rightarrow \mathrm{a}) \rightarrow \mathrm{b} \rightarrow[\mathrm{a}] \rightarrow \mathrm{b}$(D) $(\mathrm{a} \rightarrow \mathrm{b} \rightarrow \mathrm{b}) \rightarrow \mathrm{b} \rightarrow[\mathrm{a}] \rightarrow \mathrm{b}$(E) $(\mathrm{b} \rightarrow \mathrm{a} \rightarrow \mathrm{b}) \rightarrow \mathrm{b} \rightarrow$ $\rightarrow \mathrm{a}] \rightarrow \mathrm{b}$


http://tiny.cc/cse116-foldtype-grp

## The "fold-right" pattern

Is foldr tail recursive?
Answer: No! It calls the binary operations on the results of the recursive call

## What about tail-recursive versions?

Let's write tail-recursive sum!

```
sumTR :: [Int] -> Int
sumTR = ...
```

What about tail-recursive versions?

Let's write tail-recursive sum!

```
sumTR :: [Int] -> Int
sumTR xs = helper 0 xs
 where
 helper acc [] = acc
 helper acc (x:xs) = helper (acc + x) xs
```


## What about tail-recursive versions?

Lets run sumTR to see how it works

```
sumTR [1,2,3]
 ==> helper 0 [1,2,3]
 ==> helper 1 [2,3] -- 0 + 1 ==> 1
 ==> helper 3 [3] -- 1 + 2 ==> 3
 ==> helper 6 [] -- 3 + 3 ==> 6
 ==> 6
```

Note: helper directly returns the result of recursive call!

## What about tail-recursive versions?

Let's write tail-recursive cat!
catTR :: [String] -> String
catTR = ...

What about tail-recursive versions?

Let's write tail-recursive cat!

```
catTR :: [String] -> String
catTR xs = helper "" xs
 where
 helper acc [] = acc
 helper acc (x:xs) = helper (acc ++ x) xs
```


## What about tail-recursive versions?

Lets run catTR to see how it works

```
catTR
 ==> helper ""
 ==> helper "carne"
 ==> helper "carneasada"
 ==> helper "carneasadatorta"
 ==> "carneasadatorta"
```

Note: helper directly returns the result of recursive call!

## Can you spot the pattern?

-- sumTR
foo xs
= helper 0 xs
where

```
helper acc [] = acc
helper acc (x:xs) = helper (acc + x) xs
```

-- catTR
foo xs
= helper "" xs
where

```
helper acc [] = acc
 helper acc (x:xs) = helper (acc ++ x) xs
```

pattern = ...

## The "fold-left" pattern




```
cat xs = helper """xs
```

cat xs = helper """xs

```
cat xs = helper """xs
 where
 where
 where
 helper acc [] = acc
 helper acc [] = acc
 helper acc [] = acc
 helper acc (x:xs) = helper (acc ++ x) xs
```

    helper acc (x:xs) = helper (acc ++ x) xs
    ```
 helper acc (x:xs) = helper (acc ++ x) xs
```

```
foldl f b xs = helper b xs
 where
 helper acc [] = acc
 helper acc (x:xs) = helper (f acc x) xs
```

The foldl Pattern

## General Pattern

- Use a helper function with an extra accumulator argument
- To compute new accumulator, combine current accumulator with the head using some binary operation


## The "fold-left" pattern

$$
\begin{aligned}
& \text { foldl } f \text { b xs }=\text { helper } b \text { xs } \\
& \text { where } \\
& \text { helper acc }[]=\text { acc } \\
& \text { helper acc }(x: x s)=\text { helper ( } f \text { acc } x) x s
\end{aligned}
$$

Let's refactor sumTR and catTR:
sumTR = foldl ... ...
catTR = foldl ... ...

Factor the tail-recursion out!

## QUIZ

What does this evaluate to? *

$$
\begin{aligned}
& \text { fold } f \text { b xs }=\text { helper } b \text { xs } \\
& \text { where } \\
& \text { helper acc }[]=\text { acc } \\
& \text { helper acc }(x: x s)=\text { helper (f acc } x \text { ) xs }
\end{aligned}
$$

quiz = fold (:) [] [1,2,3](A) Type error(B) $[1,2,3]$(C) $[3,2,1]$(D) $[[3],[2],[1]]$
(E) $[[1],[2],[3]]$

## QUIZ

What does this evaluate to? *

$$
\begin{aligned}
& \text { foldl } f \text { b xs }=\text { helper } b \text { xs } \\
& \text { where } \\
& \text { helper acc }[]=\text { acc } \\
& \text { helper acc }(x: x s)=\text { helper (f acc } x \text { ) xs }
\end{aligned}
$$

quiz = foldl (:) [] [1,2,3](A) Type error(B) $[1,2,3]$(C) $[3,2,1]$(D) $[[3],[2],[1]]$
(E) $[[1],[2],[3]]$

## QUIZ

What does this evaluate to? *
foldl f b xs $=$ helper b xs
where
helper acc [] = acc
helper acc (x:xs) = helper (f acc $x$ ) xs
quiz $=$ foldl (\xs x -> $x$ : xs) [] [1,2,3](A) Type error(B) $[1,2,3]$(C) $[3,2,1]$(D) $[[3],[2],[1]]$
(E) $[[1],[2],[3]]$

## QUIZ

What does this evaluate to? *
foldl f b xs $=$ helper b xs
where

$$
\begin{array}{ll}
\text { helper acc }[] & =\text { acc } \\
\text { helper acc }(x: x s) & =\text { helper (f acc } x) \text { xs }
\end{array}
$$

$$
\text { quiz }=\text { foldl (\xs x -> x : xs) [] [1,2,3] }
$$(A) Type error(B) $[1,2,3]$(C) $[3,2,1]$(D) $[[3],[2],[1]]$

(E) $[[1],[2],[3]]$

## The "fold-left" pattern

```
foldl f b
 ==> helper b
 ==> helper (f b x1)
 ==> helper (f (f b x1) x2)
 ==> helper (f (f (f b x1) x2) x3) [x4]
=> helper (f (f (f (f b x1) x2) x3) x4) []
==> (f (f (f (f b x1) x2) x3) x4)
```

Accumulate the values from the left
For example:

```
foldl (+) 0
 ==> helper 0
 ==> helper (0 + 1)
 ==> helper ((0 + 1) + 2)
 ==> helper (((0 + 1) + 2) + 3) [4]
 ==> helper ((((0 + 1) + 2) + 3) + 4) []
 => ((((0 + 1) + 2) + 3) + 4)
```


## Left vs. Right

foldl f b [x1, x2, x3] ==> f (f (f b x1) x2) x3 -- Left
foldr f b [x1, x2, x3] ==> f x1 (f x2 (f x3 b)) -- Right

For example:
foldl (+) $0[1,2,3]==>((0+1)+2)+3$-- Left
foldr (+) $0[1,2,3]==>1+(2+(3+0))$-- Right

Different types!
foldl :: (b -> a -> b) -> b -> [a] -> b -- Left
foldr :: (a -> b -> b) -> b -> [a] -> b -- Right

## Useful HOF: flip

-- you can write
foldl (\xs x -> $x$ : xs) [] [1,2,3]
-- more concisely like so:
foldl (flip (:)) [] [1,2,3]
What is the type of flip?
flip :: (a -> b -> c) -> b -> a -> c

## Useful HOF: compose

- you can write
map (\x -> f (g x)) ys
-- more concisely like so:
map ( $f$. g) ys
What is the type of (.)?
(.) :: (b -> c) -> (a ->b) -> a ->c


## Higher Order Functions

Iteration patterns over collections:

- Filter values in a collection given a predicate
- Map (iterate) a given transformation over a collection
- Fold (reduce) a collection into a value, given a binary operation to combine results

Useful helper HOFs:

- Flip the order of function's (first two) arguments
- Compose two functions


## Higher Order Functions

HOFs can be put into libraries to enable modularity

- Data structure library implements map, filter, fold for its collections
- generic efficient implementation
- generic optimizations: map $f(\operatorname{map} g x s)$--> map (f.g) xs
- Data structure clients use HOFs with specific operations - no need to know the implementation of the collection

Enabled the "big data" revolution e.g. MapReduce, Spark

That's all folks!

